

- A reactor is to be built with fuel rods of 1.2cm in diameter and a liquid moderator with a 2:1 volume ratio of moderator to fuel. What will the distance between nearest fuel centerlines be
 - a. For a square lattice?
 - b. For a hexagonal lattice?

- In a fast reactor designers often want to minimize the coolant to fuel volume ratio to minimize the amount of neutron slowing down. From a geometric point of view what is the theoretical limit on the smallest ratio of coolant to fuel volume that can be obtained
 - a. With a square lattice?
 - b. With a hexagonal lattice?

- A sodium-cooled fast reactor is fueled with PuO₂, mixed with depleted UO₂. The structural material is iron. Averaged over the spectrum of fast neutrons, the microscopic cross sections and densities are as follows:

	σ_f b	σ_a b	σ_t b	ρ g/cm ³
PuO ₂	1.95	2.40	8.6	11.0
UO ₂	0.05	0.404	8.2	11.0
Na	–	0.0018	3.7	0.97
Fe	–	0.0087	3.6	7.87

- The fuel is 15% PuO₂ and 85% UO₂ by volume. The volumetric composition of the core is 30% fuel, 50% coolant, and 20% structural material. **Calculate k_∞** assuming that the values of for plutonium and uranium in the fast spectrum are 2.98 and 2.47, respectively, and that the cross sections of oxygen can be neglected.

- A reactor lattice consists of uranium rods in a heavy water moderator. The heavy water is replaced by light water.
 - a. Would the resonance escape probability increase or decrease? Why?
 - b. Would the thermal utilization increase or decrease? Why?
 - c. What would you expect the net effect on k_{∞} to be? Why?

- Suppose the volume ratio of coolant to fuel is increased in a pressurized water reactor:
 - a. Will the fast fission factor increase, decrease, or remain unchanged? Why?
 - b. Will the resonance escape probability increase, decrease, or remain unchanged? Why?

- What is the minimum number of elastic scattering collisions required to slow a neutron down from 1.0MeV to 1.0 eV in the following?
 - a. Deuterium.
 - b. Carbon-12.
 - c. Iron-56.
 - d. Uranium-238.

- A power reactor is cooled by heavy water (D_2O) but a leak causes a 1.0 atom % contamination of the coolant with light water (H_2O). Determine the resulting percentage increase or decrease in the following characteristics of the coolant:
 - a. Slowing down decrement.
 - b. Slowing down power.
 - c. Slowing down ratio.